Hall Effect-based Seismometer, Sanity Check Experiments

PS. Oops! I made a silly mistake in the breadboarding, if you look closely at the photo you can see that the 10k ground resistor at the input of the op amp is going to + input, not – as intended. Which kind of messes up all my measurements. Hey ho. I have since made a ball-bearing in a jar (1 axis) sensor and roughed out a signal conditioning circuit (which will now need tweaking…), so will repeat the experiment here and do another post asap.

A fun part of this project is the investigation of hardware possibilities for detecting seismic events and ELF/VLF signals. Even though I’m aiming towards minimum budget hardware, my funds for this have been virtually non-existent so I’ve not got much done (grumble, grumble).

For a seismometer, the requirements as it seems to me, are: simplicity, reasonable sensitivity and low cost. Ideally I want to monitor all 3 dimensions with relatively wide bandwidth. A non-requirement is any kind of absolute accuracy or calibrated measurement.

There are a variety of options for seismic sensors, most that I’ve seen fall down for these requirements in one way or another. I won’t go into them here – try searching for accelerometers (low sensitivity), geophones (expensive), pendulum-based systems (complicated build, 3 dimensions would be very tricky…). To give a ballpark, prices for a ready-made seismometer system based on the Raspberry Pi, the Raspberry Shake, start at $375 USD. That’s for one dimension, using a geophone sensor.

Almost a year ago I sketched out an idea for something that might work.


At the time I picked up a linear Hall Effect device from Jaycar, a UGN3503UA, costing just $7.75 AUS. It’s in case very like a transistor, just 3 pins : +ve, -ve power and output. An example use in the datasheet uses the same principle as I want to exploit:


A magnet is glued to the back of the sensor. As a (ferrous material) cog approaches the sensor, the magnetic field increases, correspondingly increasing the devices output voltage.

The other day a bag of ball bearings arrived. I just got around to having a play. This is what the setup looked like:


I’ve got the Hall Effect device soldered to a connector to make breadboarding easier. On the left of it is a blob of Blue Tack attaching a 1cm diameter/3mm deep neodymium magnet. On the right, a 5/8″ steel ball precision mounted between my finger & thumb.

Right now I’ve only got a crude +/- homebrew power supply, so I’m using an op amp to buffer a potential divider to provide a lower voltage to suite the device. Another op amp is used to provide a 10x amplifier from the output of the device.

When I put the magnet in direct contact with the sensor it saturated it at one extreme or the other. I seemed to get best results with around 1cm space in between. With a 5.2v supply to the sensor, this led to a no-magnet output of 2.52v (after the 10x amplification). With the magnet, this changed to 3.07v or 1.76v depending on polarity. With the ball bearing at 1cm away this changed by approx 0.01/0.02v, steadily increasing from there to 3.50/1.22v when the ball bearing touched the sensor.

This sensitivity was less than I’d hoped, but will hopefully be enough to be usable if I tweak a few of the components. I reckon it’s definitely worth going for a prototype, see how it behaves in practice.

I’ll need to find a very small jar 🙂

Here are my full notes:





Author: Danny Ayers

Web research and development, music geek, woodcarver. Originally from rural northern England, now based in rural northern Italy.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s